Abstract

AbstractIntroduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.