Abstract

Author SummaryThe brain has a robust ability to process sensory stimuli, even when those stimuli are warped in time. The most prominent example of such perceptual robustness occurs in speech communication. Rates of speech can be highly variable both within and across speakers, yet our perceptions of words remain stable. The neuronal mechanisms that subserve invariance to time warping without compromising our ability to discriminate between fine temporal cues have puzzled neuroscientists for several decades. Here, we describe a cellular process whereby auditory neurons recalibrate, on the fly, their perceptual clocks and allows them effectively to correct for temporal fluctuations in the rate of incoming sensory events. We demonstrate that this basic biophysical mechanism allows simple neural architectures to solve a standard benchmark speech-recognition task with near perfect performance. This proposed mechanism for time-warp–invariant neural processing leads to novel hypotheses about the origin of speech perception pathologies.

Highlights

  • Robustness of neuronal information processing to temporal warping of natural stimuli poses a difficult computational challenge to the brain [1,2,3,4,5,6,7,8,9]

  • Changes in speaking rate in ongoing natural speech introduce temporal warping of the acoustic signal on a scale of hundreds of milliseconds, encompassing temporal distortions of acoustic cues that range from 2-fold compression to 2-fold dilation [14,15]

  • We describe a cellular process whereby auditory neurons recalibrate, on the fly, their perceptual clocks and allows them effectively to correct for temporal fluctuations in the rate of incoming sensory events. We demonstrate that this basic biophysical mechanism allows simple neural architectures to solve a standard benchmark speech-recognition task with near perfect performance

Read more

Summary

Introduction

Robustness of neuronal information processing to temporal warping of natural stimuli poses a difficult computational challenge to the brain [1,2,3,4,5,6,7,8,9]. This is true for auditory stimuli, which often carry perceptually relevant information in fine differences between temporal cues [10,11]. It has long been demonstrated that speech perception in humans normalizes durations of temporal cues to the rate of speech [2,16,17,18], the neural mechanisms underlying this perceptual constancy have remained mysterious

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.