Abstract
Empirical mode decomposition (EMD) is a favorite tool for analyzing nonlinear and non-stationary signals. It decomposes any signal into a finite set of oscillation modes consisting of intrinsic mode functions and a residual function. Superimposing all these modes reconstructs the signal without any information loss. In addition to satisfying the perfect reconstruction property, however, there is no implication about the reconstruction optimality of the EMD. The lack of optimality restricts the signal recovery capability of the EMD in the presence of disturbances. Only a few attempts are made to meet this deficiency. In this paper, we propose a new algorithm named as time-varying weighted EMD. By this algorithm, original signal is reconstructed in the minimum mean-square error sense through the EMD followed by time-varying weightings of the oscillation modes. Determining the time-varying weights for the oscillation modes constitutes the backbone of the algorithm. Aiming to determine the time-varying weights of the oscillation modes; we use multiple sets of basis functions. The effectiveness of the proposed algorithm is demonstrated by computer simulations involving real biomedical signals. Simulation results show that the proposed algorithm exhibits better performance than that of its existing counterparts in terms of lower mean-square error and higher signal-to-error ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.