Abstract

We propose a new Markov switching model with time‐varying transitions probabilities. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time‐varying probability is generated by the score of the predictive likelihood function. We show how the model dynamics can be readily interpreted. We investigate the performance of the model in a Monte Carlo study and show that the model is successful in estimating a range of different dynamic patterns for unobserved regime switching probabilities. We also illustrate the new methodology in an empirical setting by studying the dynamic mean and variance behaviour of US industrial production growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.