Abstract

This paper is aimed at identifying the time-varying parameters and ultimate behavior of high voltage switch structures based on a series of full-scale shake table tests with harmonic excitations. Each structure involves a mechanical device for switch-on and switch-off, a friction-based switch, and three porcelain pillars. To identify the structural properties over time, a novel slide-window least-squares estimation method is developed. Each time-varying parameter is firstly approximately expressed by a simple polynomial or exponential function with time in a short slide-window. The time-invariant coefficients of the polynomial or exponential function are then estimated using a least-squares method. Finally, the time-varying parameters can be simply calculated from the estimated polynomial or exponential function. The proposed method is validated by simulated one- and two-story buildings with three kinds of time-varying parameters (stiffness varying abruptly, gradually, and periodically) under earthquake excitations. The application of the proposed method to the tested switch structures demonstrated that the time-varying fundamental frequency of the structures decreased from 7.5 to 6.5 Hz near resonance, which is consistent with the shake table test observations under an excitation of 1.27 and 2.54 mm in stroke. During the shake table tests, all switch structures failed at the bottom of the mechanical device under cyclic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.