Abstract
This paper develops a comprehensive theory for rational expectations models with time–varying (random) coefficients. Based on the Multiplicative Ergodic Theorem it develops a “linear algebra” in terms of Lyapunov exponents, defined as the asymptotic growth rates of trajectories. Together with their associated Lyapunov spaces they provide a perfect substitute for the eigenvalue/eigenspace analysis used in constant coefficient models. In particular, they allow the construction of explicit solution formulas similar to the standard case. These methods and their numerical implementation is illustrated using a canonical New Keynesian model with a time–varying policy rule and lagged endogenous variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.