Abstract

Time-varying mixture models are useful for representing complex, dynamic distributions. Components in the mixture model can appear and disappear, and persisting components can evolve. This allows great flexibility in streaming data applications where the model can be adjusted as new data arrives. Fitting a mixture model with computational guarantees which can meet real-time requirements is challenging with existing algorithms, especially when the model order can vary with time. Existing approximate inference methods may require multiple restarts to search for a good local solution. Monte-Carlo methods can be used to jointly estimate the model order and model parameters, but when the distribution of each mixand has a high-dimensional parameter space, they suffer from the curse of dimensionality and and from slow convergence. This paper proposes a generative model for time-varying mixture models, tailored for mixtures of discrete-time Markov chains. A novel, deterministic inference procedure is introduced and is shown to be suitable for applications requiring real-time estimation, and the method is guaranteed to converge at each time step. As a motivating application, we model and predict traffic patterns in a transportation network. Experiments illustrate the performance of the scheme and offer insights regarding tuning of the algorithm parameters. The experiments also investigate the predictive power of the proposed model compared to less complex models and demonstrate the superiority of the mixture model approach for prediction of traffic routes in real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.