Abstract
Financial market price formation and exchange activity can be investigated by means of ultra-high frequency data. In this paper we investigate an extension of the Autoregressive Conditional Duration (ACD) model of Engle and Russell (1998) by adopting a mixture of distribution approach with time varying weights. Empirical estimation of the Mixture ACD model shows that the limitations of the standard base model and its inadequacy of modelling the behavior in the tail of the distribution are suitably solved by our model. When the weights are made dependent on some market activity data, the model lends itself to some structural interpretation related to price formation and information diffusion in the market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.