Abstract
Compared with traditional fixed formation for a group of dynamical systems, time-varying formation can produce the following benefits: (i) covering the greater part of complex environments and (ii) collision avoidance. This paper studies the time-varying formation tracking for multiple manipulator systems (MMSs) under fixed and switching directed graphs with a dynamic leader, whose acceleration cannot change too fast. An explicit mathematical formulation of time-varying formation is developed based on the related practical applications. A class of extended inverse dynamics control algorithms combined with distributed sliding-mode estimators are developed to address the aforementioned problem. By invoking finite-time stability arguments, several novel criteria (including sufficient criteria, necessary and sufficient criteria) for global finite-time stability of MMSs are established. Finally, numerical experiments are presented to verify the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.