Abstract

This paper studies the time-varying formation for multiple unmanned surface vessels (USVs) with heterogeneous hydrodynamics under actuator attacks. Firstly, the distributed time-varying formation is achieved under a formation feasibility condition. Secondly, an extended state observer (ESO) is devised to estimate the heterogeneous hydrodynamics and the external time-varying disturbance of multiple USVs, as well as the unknown control input of the leader USV simultaneously based on the neighbor USVs’ relative information; Thirdly, a distributed security controller is jointly designed based on the relative information of neighbors with the presence of an additive adaptive correction term to suppress the effects of actuator attacks instead of redesigning the nominal controller; Finally, the effectiveness of the derived theoretical method is demonstrated by simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call