Abstract

This article presents a novel method for learning time-varying dynamic Bayesian networks. The proposed method breaks down the dynamic Bayesian network learning problem into a sequence of regression inference problems and tackles each problem using the Markov neighborhood regression technique. Notably, the method demonstrates scalability concerning data dimensionality, accommodates time-varying network structure, and naturally handles multi-subject data. The proposed method exhibits consistency and offers superior performance compared to existing methods in terms of estimation accuracy and computational efficiency, as supported by extensive numerical experiments. To showcase its effectiveness, we apply the proposed method to an fMRI study investigating the effective connectivity among various regions of interest (ROIs) during an emotion-processing task. Our findings reveal the pivotal role of the subcortical-cerebellum in emotion processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.