Abstract

People’s long-term mobility decisions depend on their current situation, past history and/or future plans. Consequently, models of long-term mobility decisions should take lagged, concurrent and/or lead effects into account. Contributing to the literature on long-term mobility analysis, this study develops an integrated framework for modeling the temporally interdependent choices related to residential change, job change and car purchasing decisions. Using retrospective life trajectory data collected through a Web-based survey, a dynamic Bayesian network model is estimated. Results show that different life domains are highly interdependent. Concurrent, as well as lagged and lead effects are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.