Abstract

This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases for which the estimation of a tv-SURE outperforms the estimation of a Single Regression Equations model with time-varying coefficients (tv-SRE). The study shows that Zellner's results cannot be straightforwardly extended to the time-varying case. The tv-SURE is applied to the Fama and French five-factor model using data from four different international markets. Finally, we provide the estimation under cross-restriction and discuss a testing procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.