Abstract

In this correspondence, a method is presented for estimating double-selective channels using superimposed training (ST). The estimator is based on a subspace projection of the time-varying channel onto a set of two dimensional orthogonal functions. These functions are formed via the outer product of the discrete prolate spheroidal basis vectors and the universal basis vectors. This approach allows the channel to be expanded in both the time-delay and time dimensions with the fewest parameters when incomplete channel statistics are given. This correspondence also provides a theoretical performance analysis of the estimation algorithm and its corroboration via simulations. It is shown that this new method provides an enhancement in channel estimation when compared with state-of-the-art approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call