Abstract

\begin{abstract} In this paper we consider Time-Varying Block (TVB) codes, which generalize a number of previous synchronization error-correcting codes. We also consider various practical issues related to MAP decoding of these codes. Specifically, we give an expression for the expected distribution of drift between transmitter and receiver due to synchronization errors. We determine an appropriate choice for state space limits based on the drift probability distribution. In turn, we obtain an expression for the decoder complexity under given channel conditions in terms of the state space limits used. For a given state space, we also give a number of optimizations that reduce the algorithm complexity with no further loss of decoder performance. We also show how the MAP decoder can be used in the absence of known frame boundaries, and demonstrate that an appropriate choice of decoder parameters allows the decoder to approach the performance when frame boundaries are known, at the expense of some increase in complexity. Finally, we express some existing constructions as TVB codes, comparing performance with published results, and showing that improved performance is possible by taking advantage of the flexibility of TVB codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.