Abstract

We consider the adaptive radar problem where the properties of the (nonstationary) clutter signals can be estimated using multiple observations of radar returns from a number of sufficiently homogeneous range/azimuth resolution cells. We derive a method for approximating an arbitrary Hermitian covariance matrix by a time-varying autoregressive model of order m, TVAR(m), that is based on the Dym-Gohberg band-matrix extension technique which gives the unique TVAR(m) model for any nondegenerate covariance matrix. We demonstrate that the Dym-Gohberg transformation of the sample covariance matrix gives the maximum-likelihood (ML) estimate of the TVAR(m) covariance matrix. We introduce an example of TVAR(m) clutter modeling for high-frequency over-the-horizon radar that demonstrates its practical importance

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.