Abstract

Changes of the energy spectrum of primary cosmic radiation can be followed through the time variations of east-west asymmetry of the μ -meson component at low latitudes. Such a study has been conducted for the first time at Ahmedabad during 1957-8. The changes of east-west asymmetry are associated with changes of the daily variation of cosmic ray in­tensity, of the daily mean neutron intensity measured at equatorial and middle latitude stations, of the index of geomagnetic disturbance and of the horizontal component of the earth’s magnetic field. The study indicates that days with high east-west asymmetry are associated with geomagnetically quiet days and a cosmic ray daily variation consistent with its being produced by an anisotropy of primary radiation outside the influence of the geomagnetic field. On such days, the daily variation produced by the anisotropy, as observed at an equatorial station, has a significant diurnal as well as a semi-diurnal component. High east-west asymmetry and associated anisotropy occur 3 to 5 days before the arrival of solar corpuscular beams which envelop the earth. Days with low east-west asymmetry occur about 3 to 4 days after the onset of cosmic ray storms associated with geomagnetic storms, usually of the SC type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call