Abstract

This paper develops a novel failure probability-based global sensitivity index by introducing the Bayes formula into the moment-independent global sensitivity index to approximate the effect of input random variables or stochastic processes on the time-variant reliability. The proposed global sensitivity index can estimate the effect of uncertain inputs on the time-variant reliability by comparing the difference between the unconditional probability density function of input variables and the conditional probability density function in failure state of input variables. Furthermore, a single-loop active learning Kriging method combined with metamodel-based importance sampling is employed to improve the computational efficiency. The accuracy of the results obtained by Kriging model is verified by the reference results provided by the Monte Carlo simulation. Four examples are investigated to demonstrate the significance of the proposed failure probability-based global sensitivity index and the effectiveness of the computational method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.