Abstract
Ultracompact and hypercompact HII regions appear when a star with a mass larger than about 15 solar masses starts to ionize its own environment. Recent observations of time variability in these objects are one of the pieces of evidence that suggest that at least some of them harbor stars that are still accreting from an infalling neutral accretion flow that becomes ionized in its innermost part. We present an analysis of the properties of the HII regions formed in the 3D radiation-hydrodynamic simulations presented by Peters et al. as a function of time. Flickering of the HII regions is a natural outcome of this model. The radio-continuum fluxes of the simulated HII regions, as well as their flux and size variations are in agreement with the available observations. From the simulations, we estimate that a small but non-negligible fraction (~ 10 %) of observed HII regions should have detectable flux variations (larger than 10 %) on timescales of ~ 10 years, with positive variations being more likely to happen than negative variations. A novel result of these simulations is that negative flux changes do happen, in contrast to the simple expectation of ever growing HII regions. We also explore the temporal correlations between properties that are directly observed (flux and size) and other quantities like density and ionization rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.