Abstract

A ring resonator involves a scattering process where a part of the output is fed again into the input. The same formal structure is encountered in the problem of time travel in a neighborhood of a closed timelike curve (CTC). We know how to describe quantum optics of ring resonators, and the resulting description agrees with experiment. We can apply the same formal strategy to any looped quantum evolution, in particular to the time travel. The argument is in its essence a topological one and thus does not refer to any concrete geometry. It is shown that the resulting paradigm automatically removes logical inconsistencies associated with chronology protection, provided all input-output relations are given by unitary maps. Examples of elementary loops and a two-loop time machine illustrate the construction. In order to apply the formalism to quantum computation one has to describe multi-qubit systems interacting via CTC-based quantum gates. This is achieved by second quantization of loops. An example of a multiparticle system, with oscillators interacting via a time machine, is explicitly calculated. However, the resulting treatment of CTCs is not equivalent to the one proposed by Deutsch in his classic paper [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.