Abstract
Behavior recognition plays an essential role in numerous behavior-driven applications ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</i> . <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</i> ., virtual reality and smart home) and even in the security-critical applications ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</i> . <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</i> ., security surveillance and elder healthcare). Recently, WiFi-based behavior recognition (WBR) technique stands out among many behavior recognition techniques due to its advantages of being non-intrusive, device-free, and ubiquitous. However, existing WBR research mainly focuses on improving the recognition precision, while rarely studying the security aspects. In this paper, we reveal that WBR systems are vulnerable to manipulating physical signals. For instance, our observation shows that WiFi signals can be changed by jamming signals. By exploiting the vulnerability, we propose two approaches to generate physically online adversarial samples to perform untargeted attack and targeted attack, respectively. The effectiveness of these attacks are extensively evaluated over four real-world WBR systems. The experiment results show that our attack approaches can achieve 80% and 60% success rates for untargeted attack and targeted attack in physical world, respectively. We also show that our attack approaches can be generalized to other WiFi-based sensing applications, such as user authentication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dependable and Secure Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.