Abstract

Circadian clocks keep time in the digestive, circulatory, reproductive, excretory, and nervous systems even in absence of external cues. Central oscillators in the brain control locomotor activity of organisms ranging from fruit flies to man, but the functions of the clocks in peripheral nervous system are not well understood. The presence of autonomous peripheral oscillators in the major taste organ of Drosophila, the proboscis, prompted us to test whether gustatory responses are under control of the circadian clock. We find that synchronous rhythms in physiological and behavioral responses to attractive and aversive tastants are driven by oscillators in gustatory receptor neurons (GRNs); primary sensory neurons that carry taste information from the proboscis to the brain. During the middle of the night, high levels of G protein-coupled receptor kinase 2 (GPRK2) in the GRNs suppresses tastant-evoked responses. Flies with disrupted gustatory clocks are hyperphagic and hyperactive, recapitulating behaviors typically seen under the stress of starvation. Temporal plasticity in innate behaviors should offer adaptive advantages to flies. In this Extra View article we discuss how oscillators inside GRNs regulate responsiveness to tastants, and influence feeding, metabolism and general activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.