Abstract
Varying the gain of the feedback signal during a target-matching task alters the synaptic input onto the motor neuron pool. The purpose was to determine the influence of the gain of the feedback signal on the time to failure for men and women when maintaining arm position while supporting a submaximal inertial load with the elbow flexor muscles. While seated with the upper arm vertical, 15 women and 14 men maintained a constant elbow angle (1.57 rad) and supported a load equal to 15% of maximal voluntary contraction (MVC) force until failure. The task was performed on separate days with either a low gain or a high gain for the joint-angle signal. The percent decline in MVC force after the fatiguing contraction was similar for the low- and high-gain conditions (P = 0.24), and did not differ for men and women (P = 0.11). The discharge of motor units in biceps brachii declined at a greater rate during the high-gain condition for men and women, but only the women experienced a briefer time to failure for the high-gain session (8.7 +/- 2.3 min) compared with the low-gain session (11.9 +/- 4.8; P = 0.003). The men had similar times to failure for the low- (6.0 +/- 2.2 min) and high-gain conditions (5.9 +/- 2.1 min; P = 0.35). Linear and stepwise, multiple-regression analyses revealed that the time to failure for the men was associated with the absolute target force, the standard deviation (SD) for the resultant wrist acceleration, and the brachialis aEMG (P <or= 0.02), whereas the time to failure for the women was associated with the rate of decline in motor unit discharge, the SD for the resultant wrist acceleration, and the changes in mean arterial pressure and heart rate (P <or= 0.001). Despite each subject exerting the same net muscle torque during the two gain conditions and a similar effect of feedback gain on the discharge rate of motor units for all subjects, the time to failure for the fatiguing contractions was limited by different mechanisms for the men and women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.