Abstract

We consider a one-dimensional stationary time series of fixed duration T. We investigate the time t_{m} at which the process reaches the global maximum within the time interval [0,T]. By using a path-decomposition technique, we compute the probability density function P(t_{m}|T) of t_{m} for several processes, that are either at equilibrium (such as the Ornstein-Uhlenbeck process) or out of equilibrium (such as Brownian motion with stochastic resetting). We show that for equilibrium processes the distribution of P(t_{m}|T) is always symmetric around the midpoint t_{m}=T/2, as a consequence of the time-reversal symmetry. This property can be used to detect nonequilibrium fluctuations in stationary time series. Moreover, for a diffusive particle in a confining potential, we show that the scaled distribution P(t_{m}|T) becomes universal, i.e., independent of the details of the potential, at late times. This distribution P(t_{m}|T) becomes uniform in the "bulk" 1≪t_{m}≪T and has a nontrivial universal shape in the "edge regimes" t_{m}→0 and t_{m}→T. Some of these results have been announced in a recent letter [Europhys. Lett. 135, 30003 (2021)0295-507510.1209/0295-5075/ac19ee].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call