Abstract

Three to 5 cycling tests to exhaustion allow prediction of time to exhaustion (TTE) at power output based on calculation of critical power (CP). We aimed to determine the accuracy of CP predictions of TTE at power outputs habitually endured by cyclists. Fourteen endurance-trained male cyclists underwent 4 randomized cycle-ergometer TTE tests at power outputs eliciting (i) mean Wingate anaerobic test (WAnTmean), (ii) maximal oxygen consumption, (iii) respiratory compensation threshold (VT2), and (iv) maximal lactate steady state (MLSS). Tests were conducted in duplicate with coefficient of variation of 5%-9%. Power outputs were 710 ± 63 W for WAnTmean, 366 ± 26 W for maximal oxygen consumption, 302 ± 31 W for VT2 and 247 ± 20 W for MLSS. Corresponding TTE were 00:29 ± 00:06, 03:23 ± 00:45, 11:29 ± 05:07, and 76:05 ± 13:53 min:s, respectively. Power output associated with CP was only 2% lower than MLSS (242 ± 19 vs. 247 ± 20 W; P < 0.001). The CP predictions overestimated TTE at WAnTmean (00:24 ± 00:10 mm:ss) and MLSS (04:41 ± 11:47 min:s), underestimated TTE at VT2 (-04:18 ± 03:20 mm:ss; P < 0.05), and correctly predicted TTE at maximal oxygen consumption. In summary, CP accurately predicts MLSS power output and TTE at maximal oxygen consumption. However, it should not be used to estimate time to exhaustion in trained cyclists at higher or lower power outputs (e.g., sprints and 40-km time trials). Novelty CP calculation enables to predict TTE at any cycling power output. We tested those predictions against measured TTE in a wide range of cycling power outputs. CP appropriately predicted TTE at maximal oxygen consumption intensity but err at higher and lower cycling power outputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call