Abstract
The primary goal of a time-to-event estimation model is to accurately infer the occurrence time of a target event. Most existing studies focus on developing new models to effectively utilize the information in the censored observations. In this paper, we propose a model to tackle the time-to-event estimation problem from a completely different perspective. Our model relaxes a fundamental constraint that the target variable, time, is a univariate number which satisfies a partial order. Instead, the proposed model interprets each event occurrence time as a time concept with a vector representation. We hypothesize that the model will be more accurate and interpretable by capturing (1) the relationships between features and time concept vectors and (2) the relationships among time concept vectors. We also propose a scalable framework to simultaneously learn the model parameters and time concept vectors. Rigorous experiments and analysis have been conducted in medical event prediction task on seven gene expression datasets. The results demonstrate the efficiency and effectiveness of the proposed model. Furthermore, similarity information among time concept vectors helped in identifying time regimes, thus leading to a potential knowledge discovery related to the human cancer considered in our experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.