Abstract

Time synchronization is a critical piece of infrastructure for any distributed system. Wireless sensor networks have emerged as an important and promising research area in the recent years. Time synchronization is important for many sensor network applications that require very precise mapping of gathered sensor data with the time of the events, for example, in tracking and vehicular surveillance. It also plays an important role in energy conservation in MAC layer protocols. The paper studies different existing methods, protocols, significant time parameters (clock drift, clock speed, synchronization errors, and topologies) to achieve accurate synchronization in a sensor network. The studied Synchronization protocols include conventional time sync protocols (RBS, Timing-sync Protocol for Sensor Networks -TPSN, FTSP), and other application specific approaches such as all node-based approach, a diffusion-based method and group sync approaches aiming at providing network-wide time. The goal for writing this paper is to study most common existing time synchronization approaches and stress the need of a new class of secure-time synchronization protocol that is scalable, topology independent, fast convergent, energy efficient, less latent and less application dependent in a heterogeneous hostile environment. Our survey provides a valuable framework by which protocol designers can compare new and existing synchronization protocols from various metric discussed in the paper. So, we are hopeful that this paper will serve a complete one-stop investigation to study the characteristics of existing time synchronization protocols and its implementation mechanism in a Sensor network environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call