Abstract
A fully discrete scheme is proposed for numerically solving the strongly nonlinear time-fractional parabolic problems. Time discretization is achieved by using the Grünwald–Letnikov (G–L) method and some linearized techniques, and spatial discretization is achieved by using the standard second-order central difference scheme. Through a Grönwall-type inequality and some complementary discrete kernels, the optimal time-stepping error estimates of the proposed scheme are obtained. Finally, several numerical examples are given to confirm the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.