Abstract
We study the dynamical density matrix renormalization group (DDMRG) and time-dependent density matrix renormalization group (td-DMRG) algorithms in the ab initio context to compute dynamical correlation functions of correlated systems. We analyze the strengths and weaknesses of the two methods in small model problems and propose two simple improved formulations, DDMRG++ and td-DMRG++, that give increased accuracy at the same bond dimension at a nominal increase in cost. We apply DDMRG++ to obtain the oxygen core-excitation energy in the water molecule in a quadruple-zeta quality basis, which allows us to estimate the remaining correlation error in existing coupled cluster results. Further, we use DDMRG++ to compute the local density of states and gaps and td-DMRG++ to compute the complex polarization function, in linear hydrogen chains with up to 50 H atoms, to study metallicity and delocalization as a function of bond length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.