Abstract

This paper studies the anode region of an eroding anode with a nonstationary arc-root attachment. High-current free-burning short as well as long arcs at atmospheric pressure are investigated. A technique to study the anode region of the arc is suggested. An anode moving perpendicular to the arc axis was used for estimating parameters of the anode jets at a given moment of their development. The mechanism of current transfer in the anode region is considered on the basis of electrophysical and optical-spectroscopic investigations of the arc attachment traces and plasma parameters both of the anode jet and arc column. The anode jet was found to be of importance in the stationary arc operation. The near-anode plasma parameters depend on the effect of the cathode jet. In short arcs (L/sub a//spl sim/2 mm), the plasma temperature at the anode exceeds 20000 K, while in long arcs (L/sub a/>50 mm), it falls below 7000 K. At plasma temperature T/sub a/>11000 K, the total arc current in the anode region is transferred through the arc plasma, while at lower temperatures, both the arc column and the anode jet take part in the current transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.