Abstract

Bluetooth Low Energy (BLE) is one of the most important technologies that feed the growing field of Internet of Things and Wireless Sensor Networks. Due to its flexibility and unique low power-consumption, an increasing number of industrial devices, household appliances and wearables are being designed using it. However, the real-time demands of these networks such as timing and Quality of Service are not fully covered by the protocol itself. To help improve and offer some control over these characteristics, this paper presents a time slot transmission scheme with packet prioritization. It is based on the division and allocation of the connection interval to two types of messages: real-time and ordinary. The goal is to offer the lowest packet loss and time guarantees for real-time messages, while providing acceptable throughput for ordinary ones. Since the probability of a BLE connection to close increases with the number of packets sent through it, the position where a real-time packet is being sent as well as the number of ordinary messages in a connection represent key factors. The use of the first and last slot for real-time packets with ordinary flow restricted to the space between them decreases the transmission delay uncertainty and allows probability tuning based on the number of ordinary messages. Simulations were performed using the proposed scheme and a reduction of more than 100 times in the delay variance was observed for real-time transmissions. Regarding reliability, around 5% of the packets were lost for a bit error rate of $${10^{-3}}$$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.