Abstract
Four hypotheses (switch, instructional-ambiguity, memory decay, and time sharing) were evaluated in a reversed peak-interval procedure with gaps by presenting distracter stimuli during the uninterrupted timed signal. The switch, instructional-ambiguity, and memory-decay hypotheses predict that subjects should time through the distracter and delay responding during gaps. The time-sharing hypothesis assumes that the internal clock shares attentional and working-memory resources with other processes, so that both gaps and distracters delay timing by causing working memory to decay. We found that response functions were displaced both by gaps and by distracters. Computer simulations show that when combined, the memory-decay and time-sharing hypotheses can mechanistically address present data, suggesting that these two hypotheses may reflect different levels of analysis of the same phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.