Abstract

BackgroundSoil salinity is a primary factor limiting soybean (Glycine max) productivity. Breeding soybean for tolerance to high salt conditions is therefore critical for increasing yield. To explore the molecular mechanism of soybean responses to salt stress, we performed a comparative transcriptome time-series analysis of root samples collected from two soybean cultivars with contrasting salt sensitivity.ResultsThe salt-tolerant cultivar ‘Qi Huang No.34’ (QH34) showed more differential expression of genes than the salt-sensitive cultivar ‘Dong Nong No.50’ (DN50). We identified 17,477 genes responsive to salt stress, of which 6644 exhibited distinct expression differences between the two soybean cultivars. We constructed the corresponding co-expression network and performed Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results suggested that phytohormone signaling, oxidoreduction, phenylpropanoid biosynthesis, the mitogen-activated protein kinase pathway and ribosome metabolism may play crucial roles in response to salt stress.ConclusionsOur comparative analysis offers a comprehensive understanding of the genes involved in responding to salt stress and maintaining cell homeostasis in soybean. The regulatory gene networks constructed here also provide valuable molecular resources for future functional studies and breeding of soybean with improved tolerance to salinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call