Abstract

The last decade has witnessed the rapid growth of open-source software (OSS). Still, all contributors may find it difficult to assimilate into the OSS community even they are enthusiastic to make contributions. We thus suggest that partner recommendation across different roles may benefit both the users and developers, i.e., once we are able to make successful recommendation for those in need, it may dramatically contribute to the productivity of developers and the enthusiasm of users, thus further boosting OSS projects’ development. Motivated by this potential, we model the partner recommendation as link prediction task from email data via network embedding methods. In this article, we introduce time-series snapshot network (TSSN) that is a mixture network to model the interactions among users and developers. Based on the established TSSN, we perform temporal biased walk (TBW) to automatically capture both temporal and structural information of the email network, i.e., the behavioral similarity between individuals in the OSS email network. Experiments on ten Apache data sets demonstrate that the proposed TBW significantly outperforms a number of advanced random walk-based embedding methods, leading to the state-of-the-art recommendation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.