Abstract

Deciding when and how to maintain offshore wind turbines is becoming even more complex as the size of wind farms increases, while accessibility is challenging compared to onshore wind farms. Planning future maintenance actions requires the wind farm operator to consider factors such as the current condition of the turbine, the cost of a given maintenance action, revenue generated by the asset, weather factors and vessel availability. Rather than making case-by-case decisions for each turbine, the approach described in this paper allows the wind farm operators to automate the process of short to-medium term maintenance planning through application of a Semi-Markov Decision Process (SMDP). The model proposed here is capable of suggesting the cost-optimal maintenance policy given weather forecast, future vessel costs and availability and the current condition of the turbine. Using the semi-Markov approach, allows the user to implement time varying failure rate. As the model is capable of utilising time-series data, future weather and vessel constraints can be applied depending on the information available to the user at the time, which will be reflected in the optimal policy suggested by the model. The model proposed here facilitates maintenance decision making in wind farms and will lead to cost reduction through more efficient planning. In addition to that, the model can be used to carry out a cost-benefit analysis of using vessels with different properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.