Abstract

The passive optical network (PON) is widely used in optical fiber communication thanks to its low cost and low resource consumption. However, the passiveness brings about a critical problem that it requires manual work to identify the topology structure, which is costly and prone to bringing noise to the topology logs. In this paper, we provide a base solution firstly introducing neural networks for such problems, and based on that solution we propose a complete methodology (PT-Predictor) for predicting PON topology through representation learning on its optical power data. Specifically, we design useful model ensembles (GCE-Scorer) to extract the features of optical power with noise-tolerant training techniques integrated. We further implement a data-based aggregation algorithm (MaxMeanVoter) and a novel Transformer-based voter (TransVoter) to predict the topology. Compared with previous model-free methods, PT-Predictor is able to improve prediction accuracy by 23.1% in scenarios where data provided by telecom operators is sufficient, and by 14.8% in scenarios where data is temporarily insufficient. Besides, we identify a class of scenarios where PON topology does not follow a strict tree structure, and thus topology prediction cannot be effectively performed by relying on optical power data alone, which will be studied in our future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.