Abstract
In the context of non-linear dynamics, next neighbor prediction methods have been successfully applied to univariate time series. We generalize these methods, in particular, center-of-mass-prediction (COM-prediction) and local linear prediction (LL-prediction), to multivariate time series. The use of multivariate prediction techniques is especially interesting when time series are short but several variables have been measured simultaneously. These additional variables can sometimes supply information to perform good predictions that otherwise could only be obtained from longer time series. In contrast to non-local prediction methods, next neighbor techniques are applicable to non-stationary time series. This is particularly valuable for time series obtained under non-laboratory conditions, as in environmental science, where boundary conditions are not controllable. The application of our methods to the prediction of zooplankton data, collected in the German North Sea close to Helgoland island, turns out to be promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.