Abstract

Since the inception of Industry 4.0 in 2012, emerging technologies have enabled the acquisition of vast amounts of data from diverse sources such as machine tools, robust and affordable sensor systems with advanced information models, and other sources within Smart Manufacturing Systems (SMS). As a result, the amount of data that is available in manufacturing settings has exploded, allowing data-hungry tools such as Artificial Intelligence (AI) and Machine Learning (ML) to be leveraged. Time-series analytics has been successfully applied in a variety of industries, and that success is now being migrated to pattern recognition applications in manufacturing to support higher quality products, zero defect manufacturing, and improved customer satisfaction. However, the diverse landscape of manufacturing presents a challenge for successfully solving problems in industry using time-series pattern recognition. The resulting research gap of understanding and applying the subject matter of time-series pattern recognition in manufacturing is a major limiting factor for adoption in industry. The purpose of this paper is to provide a structured perspective of the current state of time-series pattern recognition in manufacturing with a problem-solving focus. By using an ontology to classify and define concepts, how they are structured, their properties, the relationships between them, and considerations when applying them, this paper aims to provide practical and actionable guidelines for application and recommendations for advancing time-series analytics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.