Abstract

BackgroundMicroalgae are uniquely advantageous organisms cultured and harvested for several value-added biochemicals. A majority of these compounds are lipid-based, such as triacylglycerols (TAGs), which can be used for biofuel production, and their accumulation is most affected under nutrient stress conditions. As such, the balance between cellular homeostasis and lipid metabolism becomes more intricate to achieve efficiency in bioproduct synthesis. Lipidomics studies in microalgae are of great importance as biochemical diversity also plays a major role in lipid regulation among oleaginous species.MethodsThe aim of this study was to analyze time-series changes in lipid families produced by microalga under different nutrient conditions and growth phases to gain comprehensive information at the cellular level. For this purpose, we worked with a highly adaptable, oleaginous, non-model green microalga species, Ettlia oleoabundans (a.k.a. Neochloris oleoabundans). Using a mass spectrometry-based untargeted and targeted metabolomics’ approach, we analyzed the changes in major lipid families under both replete and deplete nitrogen and phosphorus conditions at four different time points covering exponential and stationary growth phases.ResultsComprehensive analysis of the lipid metabolism highlighted the accumulation of TAGs, which can be utilized for the production of biodiesel via transesterification, and depletion of chlorophylls and certain structural lipids required for photosynthesis, under nutrient deprived conditions. We also found a correlation between the depletion of digalactosyldiacylglycerols (DGDGs) and sulfoquinovosyldiacylglycerols (SQDGs) under nutrient deprivation.ConclusionsHigh accumulation of TAGs under nutrient limitation as well as a depletion of other lipids of interest such as phosphatidylglycerols (PGs), DGDGs, SQDGs, and chlorophylls seem to be interconnected and related to the microalgal photosynthetic efficiency. Overall, our results provided key biochemical information on the lipid regulation and physiology of a non-model green microalga, along with optimization potential for biodiesel and other value-added product synthesis.

Highlights

  • Microalgae are uniquely advantageous organisms cultured and harvested for several value-added biochemicals

  • Lipid composition, and nutrient concentrations in the media Ettlia oleoabundans cells were grown under four different nutrient conditions (N−, N+, P−, and P+) and sampled at days 2, 4, 7, and 10, representing early and late exponential and early and late stationary growth phases, respectively

  • Based on the changes which we observed in phospholipids and glycerophospholipids, we propose that when the nutrient levels are depleted in E. oleoabundans, there is a depletion of phosphatidic acids (PAs) and PGs in upstream phospholipid biosynthesis

Read more

Summary

Introduction

Microalgae are uniquely advantageous organisms cultured and harvested for several value-added biochemicals. A majority of these compounds are lipid-based, such as triacylglycerols (TAGs), which can be used for biofuel production, and their accumulation is most affected under nutrient stress conditions. From a cellular point of view, lipids are building blocks for value-added biochemicals and structural components of cellular membranes and plastids [18,19,20]. From a metabolic point view, a majority of green microalgae, generally referred to as oleaginous species, accumulate more lipids under nutrient stress conditions [23,24,25]. The lack of a macronutrient adversely affects cellular homeostasis and, cellular growth stagnates This is a major topic of interest for algal scientists and researchers investigating optimal conditions leading to higher lipid yields and sustained cellular growth profiles

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call