Abstract

BackgroundBMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Unfortunately, the signaling pathways regulated by BMP6 are largely uncharacterized due to both a lack of data and the complexity of the response.ResultsTo better characterize the signaling pathways responsive to BMP6, we conducted a time series microarray study to track BMP6 induced osteoblast differentiation and mineralization. These temporal data were analyzed using a customized gene set analysis approach to identify temporally coherent sets of genes that act downstream of BMP6. Our analysis identified BMP6 regulation of previously reported pathways, such as the TGF-beta pathway. We also identified previously unknown connections between BMP6 and pathways such as Notch signaling and the MYB and BAF57 regulatory modules. In addition, we identify a super-network of pathways that are sequentially activated following BMP6 induction.ConclusionIn this work, we carried out a microarray-based temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization using GAGE method. This novel temporal analysis is more informative and powerful than the classical static pathway analysis in that: (1) it captures the interconnections between signaling pathways or functional modules and demonstrates the even higher level organization of molecular biological systems; (2) it describes the temporal perturbation patterns of each pathway or module and their dynamic roles in osteoblast differentiation. The same set of experimental and computational strategies employed in our work could be useful for studying other complex biological processes.

Highlights

  • BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease

  • Our previous work [5] has shown that: (1) human mesenchymal stem cells (MSC) produce BMP6 in defined, serumfree conditions, (2) BMP6 is up-regulated under mild osteogenic stimulus, (3) exogenous BMP6 potently induces osteoblast differentiation, but responses to BMP2, 4, or 7 are inconsistent and require higher doses, (4) exogenous BMP6 induces the expression or up-regulation of a set of osteoblast-related genes in human MSC, and (5) 24 hour treatment with BMP6 induce high levels of osteoblast gene expression and cause mineralization

  • We designed a special analysis procedure (Figure 1) based on our newly developed GAGE (Generally Applicable Gene-set Enrichment) method [18]. Using this joint experimental and computational approach, we identified both the pathways and their temporal responses to BMP6 signaling during osteoblast differentiation and mineralization

Read more

Summary

Introduction

BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Our previous work [5] has shown that: (1) human MSC produce BMP6 in defined, serumfree conditions, (2) BMP6 is up-regulated under mild osteogenic stimulus (dexamethasone), (3) exogenous BMP6 potently induces osteoblast differentiation, but responses to BMP2, 4, or 7 are inconsistent and require higher doses, (4) exogenous BMP6 induces the expression or up-regulation of a set of osteoblast-related genes in human MSC, and (5) 24 hour treatment with BMP6 induce high levels of osteoblast gene expression and cause mineralization. These results established BMP6 as an endogenous regulator of human osteoblast differentiation [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call