Abstract
SUMMARY This case-study fits a variety of neural network (NN) models to the well-known air line data and compares the resulting forecasts with those obtained from the Box–Jenkins and Holt–Winters methods. Many potential problems in fitting NN models were revealed such as the possibility that the fitting routine may not converge or may converge to a local minimum. Moreover it was found that an NN model which fits well may give poor out-of-sample forecasts. Thus we think it is unwise to apply NN models blindly in ‘black box’ mode as has sometimes been suggested. Rather, the wise analyst needs to use traditional modelling skills to select a good NN model, e.g. to select appropriate lagged variables as the ‘inputs’. The Bayesian information criterion is preferred to Akaike’s information criterion for comparing different models. Methods of examining the response surface implied by an NN model are examined and compared with the results of alternative nonparametric procedures using generalized additive models and projection pursuit regression. The latter imposes less structure on the model and is arguably easier to understand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.