Abstract
AbstractFor time series forecasting, the problem that we often encounter is how to increase the prediction accuracy as much as possible with the irregular and noise data. This study proposes a novel multilayer feedforward neural network based on the improved particle swarm optimization with adaptive genetic operator (IPSO- MLFN). In the proposed IPSO, inertia weight is dynamically adjusted according to the feedback from particles’ best memories, and acceleration coefficients are controlled by a declining arccosine and an increasing arccosine function. Further, a crossover rate which only depends on generation and does not associate with the individual fitness is designed. Finally, the parameters of MLFN are optimized by IPSO. The empirical results on the container throughput forecast of Shenzhen Port show that forecasts with IPSO-MLFN model are more conservative and credible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.