Abstract

This paper presents a novel approach to time series forecasting, an area of significant importance across diverse fields such as finance, meteorology, and industrial production. Time series data, characterized by its complexity involving trends, cyclicality, and random fluctuations, necessitates sophisticated methods for accurate forecasting. Traditional forecasting methods, while valuable, often struggle with the non-linear and non-stationary nature of time series data. To address this challenge, we propose an innovative model that combines signal decomposition and deep learning techniques. Our model employs Generalized Autoregressive Conditional Heteroskedasticity (GARCH) for learning the volatility in time series changes, followed by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for data decomposition, significantly simplifying data complexity. We then apply Graph Convolutional Networks (GCN) to effectively learn the features of the decomposed data. The integration of these advanced techniques enables our model to fully capture and analyze the intricate features of time series data at various interval lengths. We have evaluated our model on multiple typical time-series datasets, demonstrating its enhanced predictive accuracy and stability compared to traditional methods. This research not only contributes to the field of time series forecasting but also opens avenues for the application of hybrid models in big data analysis, particularly in understanding and predicting the evolution of complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call