Abstract

Developing new features for time-series characterization is a current challenge in data science and machine learning. In this paper, we propose a new metric based on a simple and efficient algorithm, namely, the return map. The return map analysis is well established in the field of non-linear dynamics, in particular, for fitting the parameters of a chaotic system from a waveform, or to attack a chaotic communication channel. We show that our metrics work well for both non-linear dynamics and time-series feature extraction problems in the field of machine learning. In an experiment aiming to classify vibration signals of normal and damaged bearings, we compare our method with two other methods that reported to have excellent accuracy, based on entropy and statistical feature distribution, respectively. We show that our method achieves higher accuracy with almost the lowest time costs, which was confirmed in experiments with two different datasets containing three main classes of bearings: normal, with inner race faults, and with outer race faults, having different damage origins and recorded in various conditions. In particular, for the dataset supplied by Case Western Reserve University, our method reached an accuracy of 100% at signals of 5000 sample points length, with a total time of 0.4 s required for feature estimation, while the entropy-based method reached an accuracy of 95% with a time of 100 s, and a statistical feature distribution method reached an accuracy of 93% with a total time of 1.9 s. Results show that the developed method is better suited to real-time bearing condition monitoring applications than most of the methods reported to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.