Abstract
As of 2012, a downward trend in infection rates for hospital onset of both Clostridium difficile infections and methicillin-resistant Staphylococcus aureus bloodstream infections (2% and 4% decrease respectively) has been noted. Despite the success with these two organisms, several infectious pathogens in the healthcare setting have not decreased. This lack of downward trend highlights the importance of continuing to find and assess rapid detection methods to help confirm that hospital cleaning efforts meet and exceed standards of cleanliness demonstrated to reduce numbers of healthcare- associated infections (HAIs) of these pathogens. This study set out to determine the effectiveness of the swab 3M™ Clean-Trace™ Adenosine Triphosphate (ATP) System over time by comparing the ATP measurements of the culturable organisms to the corresponding quantitative microbiology. The organisms evaluated included: Acinetobacter baumannii, Bacillus anthracis Sterne endospores and vegetative cells, Candida albicans, Clostridium difficile, Escherichia coli, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus and Mycobacterium smegmatis. A combined organisms analysis did not demonstrate a significant reduction in measured ATP levels over the course of the organisms’ exposures in a controlled environment. The quantitative microbiology did, however, demonstrate a large initial organism die-off within the first 60 min (P < 0.001) of controlled environmental exposure, although the trend did not continue over the remaining 3 h of observation. The live versus dead experimental design yielded 100% microbial kill and a one log reduction (P < 0.019) between pre-exposure and post-exposure ATP measurements. This study did not demonstrate a significant effect of time in reducing ATP measures over the time periods evaluated. ATP measurements were approximately the same, regardless of the initial organism die-off. Additionally, the live versus dead analysis confirms that ATP bioluminescence is not sensitive enough to distinguish between viable organisms and organic debris remnants on sterilised equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.