Abstract

In 2022, as a result of the historically exceptional high temperatures that have been observed this summer in several parts of China, particularly in the province of Sichuan, residential demand for energy has increased. Up to 70% of Sichuan’s electricity comes from hydropower, thus creating a sensible and practical reservoir scheduling plan is essential to maximizing reservoir power generating efficiency. However, classical optimization, such as back propagation (BP) neural network, does not take into account the correlation of samples in time while generating reservoir scheduling rules. We proposed a prediction model based on LSTM neural network coupled with wavelet transformation (WT-LSTM) to address the problem. In order to extract the reservoir scheduling rules, this paper first gathers the scheduling operation data from the Xiluodu hydropower station and creates a dataset. Next, it uses the feature of the time-series prediction model with the realization of a complex nonlinear mapping function, time-series learning capability, and high prediction accuracy. The results demonstrate that the time-series deep learning network has high learning capability for reservoir scheduling by comparing evaluation indexes such as root mean square error (RMSE), rank-sum ratio (RSR), and Nash–Sutcliffe efficiency (NSE). The WT-LSTM network model put forward in this research offers better prediction accuracy than conventional recurrent neural networks and serves as a reference base for scheduling decisions by learning previous scheduling data to produce outflow solutions, which has some theoretical and practical benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call