Abstract
Abstract Improving Land Surface Temperature (LST) modeling is vital for mitigating climate change effects on various ecosystems and marine habitats such as on important sea turtle habitats. Over the past decade, extreme temperatures have likely significantly affected nesting sea turtle habitats in the Arabian Gulf, with predominantly female hatchlings creating an imbalance in the sex ratio. Such shifts have profound implications for these habitats' long-term survival and conservation management. This study leverages statistical machine learning models to measure ongoing temporal variations in LST. We break down the LST time series into trend, seasonal, and noise components using classical decomposition methods like X11, SEATS, and the Seasonal and Trend decomposition using Loess (STL) approach. The long-term trends in LST data are driven by climate change rather than seasonal fluctuations. We employed Neural Network Auto Regression (NNAR), BaggedETS, Exponential Smoothing models, and STL method to project future LST values. We also explored advanced forecasting models like Dynamic Harmonic Regression, TBATS, and SARIMA for comparative performance analysis. Extended warm periods were identified for Abu Ali Island between 2017 and 2018 through several decomposition methods, likely linked to the 2015-2016 El Niño event. We also conducted a Marine Heat Wave (MHW) analysis from 2010-2020, establishing a pronounced impact of the 2015-2016 El Niño on the Arabian Gulf. In nesting beach environments with high LST, marine heatwaves could have a significant impact on sea turtle populations without human intervention such as artificially cooling the nest temperature. SARIMA model showed higher forecasting precision for in-situ weather data while NNAR model demonstrated superior performance with remotely sensed data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.