Abstract

For power system dynamic security assessment (DSA), the conventional dynamic security region method is able to provide valuable information on security margins for preventive control. However, its event-based nature is likely to induce heavy computational burdens, especially in the presence of substantial presumed events. To tackle this challenging problem, this article develops an efficient time series data-driven scheme for batch DSA in a divide-and-conquer manner. First of all, with emphasis on short-term voltage stability, a novel u-shapelet (representative local trajectory)-based hierarchical clustering method is proposed to automatically divide various training cases into a handful of typical transient scenarios. Then, regressive shapelet learning is efficiently carried out to conquer individual scenarios, resulting in a group of high-precision security margin estimation models. With a desirable data-driven nature, the proposed scheme avoids time-consuming dynamic security region (DSR) characterization for each event, thereby achieving a significant speed-up for batch DSA. Test results on the realistic China Southern Power Grid illustrate its excellent performances on batch DSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call