Abstract
In multitemporal interferometric synthetic aperture radar (InSAR) applications, propagation delay in the troposphere introduces a major source of disturbance known as atmospheric phase screen (APS). This study proposes a novel framework to compensate for the APS from multitemporal ground-based InSAR data. The proposed framework first performs time-series clustering in accordance with the temporal APS behavior realized by the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> -means clustering approach. In the second step, joint estimation of the APS and displacement velocity is performed. For this purpose, a novel interferometric signal model, including the APS modeled by the median profiles defined in each cluster, is proposed. The proposed framework is validated with the Ku-band ground-based synthetic aperture radar data sets measured over a mountainous area in Kumamoto, Japan. Tests on these data sets reveal that compared with the conventional approach, the presented approach improves displacement estimation accuracy under severe atmospheric conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.