Abstract

Smoke detectors are the most widely used fire detectors due to their high sensitivity. However, they have persistently faced issues with false alarms, known as nuisance alarms, as they cannot distinguish smoke particles, and their responsiveness varies depending on the particle size and concentration. Although technologies for distinguishing smoke particles have shown promising results, the hardware limitations of smoke detectors necessitate an intelligent approach to analyze scattering signals of various wavelengths and their temporal changes. In this paper, we propose a pipeline that can distinguish smoke particles based on scattering signals of various wavelengths as input. In the data extraction phase, we propose methods for extracting datasets from time series data. We propose a method that combines traditional approaches, early detection methods, and a Dynamic Time Warping technique that utilizes only the shape of the signal without preprocessing. In the learning model and classification phase, we present a method to select and compare various architectures and hyperparameters to create a model that achieves the best classification performance for time series data. We create datasets for six different targets in our presented sensor and smoke particle test environment and train classification models. Through performance comparisons, we identify architecture and parameter combinations that achieve up to 98.7% accuracy. Ablation studies under various conditions demonstrate the validity of the chosen architecture and the potential of other models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call